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SUMMARY 

Numerical simulation of steam flush for clean-up of non-aqueous phase liquid (NAPL) contaminated 
groundwater sites involves solution of the multiphase, multicomponent subsurface flow equations. This 
paper describes techniques for discretizing problems with horizontal wells in a three-dimensional tetrahedral 
mesh. The effectiveness of non-linear flux limiters for reducing numerical dispersion is discussed. Primary 
variable selection and thermodynamic state transition rules will also be compared. Some example results 
for several steam flush scenarios will be presented. 
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1. INTRODUCTION 

Non-aqueous phase liquids (NAPLs) are a serious threat to groundwater supplies. Although 
NAPL exists primarily in the non-aqueous phase, small amounts of these contaminants dissolve 
in groundwater. Even these small concentrations can be very hazardous to human health. Since 
the amount of dissolved contaminant is very small, it may take many years (centuries) for a 
NAPL to dissolve sufficiently so that a free NAPL phase no longer exists. During this time an 
enormous plume of contaminated groundwater may develop. Consequently, current NAPL 
remediation strategies involve attempts to remove the source of the contaminant, the free NAPL 
phase itself. 

Simple pumping methods will be incapable of removing the residual saturation of NAPLs. 
Typically, organic NAPL contaminants are volatile (e.g. gasoline, TCE, PCE). Consequently, 
injection of air into the contaminated zone will volatilize the NAPL. The contaminant-rich gas 
phase can then be removed by vacuum extraction. lP6 

However, in the case of heterogeneous systems, or NAPL contaminants which are denser than 
water (DNAPLs), air injection may be ineffective. If air is injected below the water table (air 
sparging), then the gravitational effects will cause immediate upward movement of the gas phase 
and hence some of the NAPL phase may be bypassed. Similarly, heterogeneities may cause 
fingering of gas through low-permeability zones. 

In these situations, applicaition of heat energy to the subsurface will increase the rate of 
vaporization of the NAPL phase. Heat is typically introduced by injecting steam below the 
contaminated ~ o n e . ~ - ~  Conductive heat transfer will help to ensure that contaminated zones 
which are bypassed by the convective fluid motion will also become heated. Recently, numerical 
methods for simulating steam injection for NAPL clean-up have been discussed in References 
1&12. Two-dimensional problems were addressed in Reference 13. 

The objective of this paper is to develop numerical methods for solution of a three-phase, 
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three-dimensional model of steam injection for NAPL remediation. The numerical problem is 
similar to thermal compositional reservoir s Imula t i~n , '~ - '~  with the important added difficulty 
of allowing dispersive transport. Another important difference between contamination problems 
and reservoir simulation is that the NAPL contaminant is assumed to partition in the water 
phase. However, the solubility of NAPL contaminants in water is normally very small (i.e. the 
equilibrium mole fraction of NAPLs in water is about 10-4-10-3 under standard conditions). 
In certain cases this causes some difficulty for the Newtonian iteration when phases appear and 
disappear. In this paper we will discuss primary variable selection and the phase transition rules 
for handling phase appearance and disappearance. Several different methods from those used 
p r e v i ~ u s l y ~ ~ ' ~ ~ ' ~  will be developed. 

Methods for discretizing problems with horizontal wells in a tetrahedral mesh will be 
developed. A generalization of the methods used in References 17-20 will be employed. 

In previous  paper^^*^*^'*^' the importance of positive transmissibilities and upstream weight- 
ing was discussed. Briefly, these methods ensure that, at convergence, quantities such as mole 
fractions and saturations are in the physical range (i.e. positive and less than one), regardless of 
grid size and time step size. Convergence (of the non-linear algebraic equations) to non-physical 
values (i.e. negative mole fractions) may cause the computation to abort.I3 In Reference 13 a 
method for perturbing the dispersion tensor so that positive transmissibilities resulted was 
developed. For model problems it was dem~ns t r a t ed '~  that his perturbation was O(h), where h 
is the mesh size parameter. Consequently, this perturbation was the same size as the usual finite 
element discretization error and ensures convergence to the correct solution as the mesh size h 
goes to zero. However, positive mole fractions are obtained at all finite mesh sizes. This approach 
will be used in this work. 

Owing to the highly non-linear nature of multiphase flow, upstream weighting for the 
mobilities is not a problem of great concern if one is interested primarily in total NAPL recovery, 
because of the self-sharpening behaviour of non-linear shocks.23 However, it could be argued 
that upstream weighting of the mole fractions in the convective terms may lead to numerically 
diffused results at practical mesh sizes. The use of a non-linear flux for these terms 
will be introduced and compared with single-point upstream weighting. 

In situations where rapid movement of the gas phase occurs, gas phase fingers may form 
which bypass the contaminated zone. The minimum width of a finger which can be resolved on 
any grid is the minimum internodal spacing. Consequently, there will be discretization errors 
introduced as a result of this effect. Some grid sensitivity studies of this effect will be presented 
for two-dimensional problems. Computational considerations preclude grid refinement studies 
in three dimensions. 

Computations for a three-dimensional, heterogeneous remediation scenario will be presented. 
The effects of different placements of horizontal steam injectors and vertical production wells 
will be determined. 

2. FORMULATION 

The three phases considered are water (w), gas (g) and nonaqueous (n). The chemical components 
are water (w), air (a), NAPL component one (1) and NAPL component two (2). Assuming that 
chemical species p = w,  a, 1, 2 can exist in any phase 1 = g, w, n and all components are in 
instantaneous equilibrium, the conservation of mass for component p can be written as 
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and the energy conservation equation is 

" ( E ( 4 s I M , U , ) + ( 1  at I - 4 ) U r M r  

+ E 1 V ~ ~ 4 ~ l D l M l ~ p , V X p , )  + v 
I P  

where the velocity of each phase 1 is given by 

V1 = - K  Al(VP1 - PIgVD) 

and where 
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saturation of phase 1 
pressure of phase 1 
molar density of phase 1 
molar density of rock r 
mass density of phase 1 
absolute permeability tensor 

viscosity of phase 1 
relative permeability of phase 1 
depth 
gravitational acceleration 
dispersion/diffusion tensor for phase 1 
mole fraction of component p in phase 1 
source/sink term for component p 
temperature 
enthalpy of phase 1 
enthalpy of component p in phase 1 
internal energy of phase 1 
internal energy of rock r 
heat conductivity of rock and fluids 
source/sink term for energy. 

krJPI 

There exist the following constraints and constitutive relations among the above variables: 

s, + s, + s, = 1, 

Pg = P n  + a P c g n ( s g )  + (1  - a)CPcgw(Sg) - Pcnw(Sw = 1 1 3 7  

Pn = P ,  + aPcn,(S,) + ( 1  - a)P,,,(S, = 11, 

(4) 

where 

a = min( 1 ,  S,/S,*) ( 5 )  

and Pcgn. P,,, and Pcgw are experimentally determined capillary pressure curves, as are the 
relative permeabilities k,1.28 S,* is a blending parameter used to ensure that the capillary pressure 
has the correct form as the non-aqueous phase saturation goes to zero." Although the pressure 
relations in equation (4) are more properly termed constitutive relations, we will refer to these 
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types of relations collectively as algebraic constraints, to distinguish them from the differential 
mass conservation equations. 

In addition to the above equations, various phase equilibrium constraints must be satisfied. 
For example, for any phase I which is present, 

1 xp, = 1. 
P 

Between any two phases i and j which exist, we assume phase partitioning (instantaneous 
equilibrium) of the form (for any component p )  

x PI . = z  P i 1  ..x P I ’  . (7) 

where the Z p i j  can be a function of any of the variables. 
Although the above equations have been given for the most general case, we shall make some 

simplifying assumptions. The non-aqueous phase consists only of contaminants ( p  = 1,2), the 
water phase contains a water component and both contaminants ( p  = w, 1,2) and the gas phase 
can consist of all components (p = a, w, 1,2). In other words, 

Xai = 0, 
XWi = 0, 

i = w,n, 

i = n. 

Equations (1) and (2) represent five differential equations which can be used to determine five 
primary variables. All other (secondary) variables can be determined by means of the algebraic 
constraints, equations (4), (6) and (7). This will be discussed later. 

3. PHYSICAL PROPERTIES 

The physical properties such as densities, enthalpies, viscosities and so on are complex non-linear 
functions of temperature, mole fractions, pressure and saturations. Details of these correlations 
are given e1se~here. l~ As described in Reference 13, the thermal equilibrium ratios (equation 
(7)), latent heats and viscosities are exponential functions of temperature. 

The dispersion/diffusion tensors have the form’ 

where a: is the transverse dispersivity, a; is the longitudinal dispersivity, d ,  is the molecular 
diffusion coefficient (all in phase I) and 7 is the tortuosity. Stone’s second method is used for 
three-phase relative permeabilities.” 

4. DISCRETIZATION 

A control volume finite element approach is used to discretize equations (1) and (2). A Galerkin 
finite element method is used for the transport terms and an influence coefficient method is used 
to handle the non-linearitie~.’~ Upstream weighting is used for the mobilities (A, = k,,/p,). 
Upstream-weighted mobilities can be shown to converge to the physically correct solution for 
multiphase flow situations3’ with countercurrent gravitational flow. The time derivative terms 
are discretized using mass lumping and backward Euler time stepping. Further details about 
this method can be found in References 4, 21 and 22. 
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I f  N i  are the usual Lagrange polynomial Co basis functions, where 

1 atnodei, i 0 at all other nodes, 
Ni = 

1 Nj = 1 
i 

everywhere in the solution domain, 

and if 

then the final discrete equation for conservation of component p is 

and the discrete energy conservation equation is 

where 
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(X;t;)v,(i.j, is the van Leer weighting and the yij are given by 

y . .  V = - [" V N ,  * K - V N ,  dv, 

y!'. IJ  = - 1" V N ,  a * V N ,  dv. 

Here qi ,  q{ and $' are the set of neighbour nodes of node i such that yij, y j j  and y:'j are non-zero. 
Note that the mobility term MIAl in equations (12) and (13) is always upstream-weighted, while 
the mole fraction term in the convective transport term is flux-limited. 

Linear triangular elements are used in two dimensions and tetrahedral linear elements are 
used for three-dimensional problems. As discussed in References 4, 13, 21 and 22, it is desirable 
that yij and y;, should be non-negative. The requirement that yij 2 0 ensures that the discrete 
fluid flux is in the physically correct direction. This amounts to a condition on the type of mesh 
which can be In this work simple grids will be used which will ensure that y,, > 0 
always holds. In general it is not possible to ensure that both yij 2 0 and y i j  2 0. If y i j  < 0, then 
negative mole fractions can be a converged solution of the discrete equations at finite mesh 
sizes.4 However, as discussed in Reference 13, it is possible to perturb the dispersion tensor so 
that only non-negative mole fractions are solutions to the discrete algebraic equations. This 
perturbation can be shown (at least for a simple case) to cause only an O(h) error in the solution, 
where h is the mesh size parameter.I3 This method will be used in the following. 

The discrete equations (12) and (13) are solved using full Newton iteration. The Jacobian 
is solved using an incomplete and LU factorization3' with CGSTAB a~ce le ra t ion .~~  

In order to avoid non-physical movement of negative mass into a node, X;l in equation (12) 
is defined as 

X;l = max(0, X , J .  

To avoid problems with the Newton iteration, the function 
smoothed at points of discontinuous derivative. In equation (15) 

The form of the source/sink terms in equations (12) and (13) is such that21 

( q J i  = 0 if X ,  < 0, 

so that mass withdrawal from a node goes to zero as the mole fraction goes to zero. Equations 
(12) and (13) are fully implicit except for the dispersion tensor in equation (15). 

The van Leer weighting in equation (14) is defined by 

where Xzwnti, j )  is the downstream point between nodes i and j :  

dwn(i, j )  = i + j - ups(i, j ) ,  
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The smoothness sensor rij in equation (19) is defined by 

where i2up(l, i) is given by 

i2up(l, i) = j*  such that "(1,  j * )  = max "(1, j ) ,  
j o m  

with 

In equation (19) a van Leer limiterz4-2s is used: 

For one-dimensional, single-phase, incompressible flow i2up(l, i) would be the phase second 
point upstream and equations (19H24) would result in a TVD scheme.25 The use of the TVD 
method with a non-linear flux limiter has been shown (at least for model problems) to give 
high-resolution, oscillation-free solutions.25 Flux limiters have been used for the mobilities in 
petroleum reservoir simulation.26 However, it is our experience that, in terms of total NAPL 
mass removal, numerical diffusion of the saturation shock front is not particularly serious owing 
to the highly non-linear (self-sharpening) nature of the shock. For problems which are almost 
single-phase and constant velocity, where the NAPL phase is non-existent, the contaminant 
transport equations (12) reduce to the linear advection-dispersion equation. In this case upstream 
weighting of the mole fractions may cause excessive false diffusion. 

In two or more dimensions it is known that, in the case of scalar hyperbolic conservation 
laws, any TVD scheme is at most first-order-accurate (i.e. upstream ~ e i g h t i n g ) . ~ ~  Consequently, 
use of flux-limiting schemes in two or more dimensions is based on analogies to one-dimensional 
flows rather than rigorous argument. 

In two or more dimensions it is possible to define the second upstream point (i2up in equation 
(22)) as the second point upstream of the interface along the grid line. We will refer to this 
definition of the second upstream point as the geometric second upstream point. This geometric 
definition of the second upstream point is inappropriate for heterogeneous subsurface flow 
problems. To see this, consider a node i which is adjacent to a node i2up. Suppose node i2up 
has a very small, or zero, absolute permeability. If node i is upstream of a nodej,  then node 
i2up is the geometric second upstream point to node j. Clearly, in this situation node i2up should 
have no influence on the flow in node j. 

To avoid these problems, equation (22) attempts to select the second upstream point by going 
back along the streamline from the upstream point.35 The second upstream point is always a 
node location. It is possible to attempt to interpolate the value of the second upstream point, 
but this is a dubious proposition for heterogeneous media. For further justification of this choice 
of the second upstream point the reader is referred to Reference 35. 

Note that the definition (21) for the smoothness sensor33 assumes that the phase velocity 
along the streamline is approximately constant. If flux limiting is applied to the non-linear 
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mobility terms (A,) in equations (12) and (13), it is possible to use the flux function as the 
smoothness detector.26 However, in Reference 33 various forms of smoothness detector are used 
for true two-dimensional situations, not just the flux functions, with apparently good results. 

It is important to note that flux limiters based on TVD arguments cannot be guaranteed to 
be oscillation-free in two or more  dimension^.^^ Our initial experiments with flux limiters often 
caused the simulation to abort owing to too small time steps. This problem was traced to the 
spurious appearance and disappearance of phases with the flux limiter (this will be discussed in 
the next section). Consequently, we ended up using the flux limiter equation (21) in regions where 
the flow was virtually linear (i.e. the saturations are slowly changing). In this case the assumption 
that the phase velocity is nearly constant along a streamline is reasonable, which gives the simple 
and compact scheme (21). 

Note that different weighting methods for the mole fraction terms and for the mobility terms 
have also been used in Reference 36. A two-point upstream method (without constraints) and 
a third-order method were used in Reference 36. However, these methods are not guaranteed 
to be monotone even for one-dimensional flows. 

5. PHASE APPEARANCE AND DISAPPEARANCE 

The primary variables for a node are those which are regarded as independent when constructing 
the Jacobian. The choice of primary variables can greatly influence the convergence of the 
Newton iteration3' In the case of a non-condensable gas (e.g. air), if the mole fractions are taken 
as primary variables, then problems arise in handling cases where the gas phase appears and 
disappears owing to air transport.38 

One way of circumventing this problem is to assume that a small amount of air dissolves in 
the water phase. This method was used for gas-venting simulations as described in Reference 4. 
However, as discussed in Reference 13, this technique resulted in poor convergence of the Newton 
iteration for two-dimensional steam flush problems. 

A comparatively simple solution to this problemI3 is to assume that a small amount (e.g. 
S, = of the gas phase is always present. This results in the set of states and transition 
rules discussed below. The four states (Method 1) are 

State 1 Assumptions: all phases present 
Primary variables: P, ,  'I; S,, S,, X , ,  

State2 Assumptions: S ,  = 0, S ,  > 0, S, > 0 
Primary variables: P,, 7; S,, X , , ,  X , ,  

State3 Assumptions: S ,  = 0, S ,  = 0, S, = 1 
Primary variables: P,, T X,,, X , , ,  X , ,  

State4 Assumptions: S ,  = 0, S ,  > 0, S, > 0 
Primary variables: P,, 'I; S,, X , , ,  X , ,  

with the transition rules 

if (state = 1) then 
if (S, < 0) then 

state := 4 
elseif (S, < 0) then 

state := 2 
endif 
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elseif (state = 2) then 
if (S, c 0) then 

elseif (c, X,, > 1) then 

endif 

if (C, X,, > 1) then 
state := 4 

elseif (1, X,, > 1) then 
state := 2 

endif 

if (S, < 0) then 

elseif (c, X,, > 1) then 

endif 

state := 3 

state:= 1 

elseif (state = 3) then 

elseif (state = 4) then 

state := 3 

state:= 1 

endif 

This set of discrete equations admits a possible non-physical solution' with 

In order to avoid this non-physical solution, a penalty source term is added to the air 
conservation equation: 

max(+S, M , ,  +S,M,)K/At  if S, < 0 and X,, < 0, 
otherwise. 

The reader is referred to References 13 and 38 for more details about the penalty source (29). 
In some situations we have observed that the set of states and primary variables of (25) has 

poor convergence behaviour for the Newton iteration. This seems to occur when large amounts 

Table I .  Conversion rules for producing new states in 
Method 2 from states in Method 1 

Method 1 

State 1 
State 1 
State 1 
State 2 
State 2 
State 2 
State 3 
State 4 
State 4 
State 4 

Conversion rule 

(X,* or SJ > cl; S ,  > 0 
(X,, and S,) < c1 ; S,  > 0 

(X,, or S,) > c l ;  S, > 0 
(X,, and S,) < E ~ ;  S, > 0 

No change 
(X,, or S,) > c l ;  S, > 0 
(Xa, and SJ < cl; S, > 0 

s, = 0 

s, = 0 

s, = 0 

Method 2 

State 8 
State 1 
State 5 
State 9 
State 2 
State 6 
State 3 
State 10 
State 4 
State 7 
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of water are flushed past a NAPL contaminant below the water table. In this case the Newton 
iteration oscillates when the mole fraction of contaminant approaches zero. This problem 
appears to be due to the small amount of gas phase saturation which is required in Method 1 
below the water table. Consequently, we can attempt to alleviate this problem by using a set of 
states which allows the gas phase to disappear completely. This alternative approach uses the 
following set of states and primary variables (Method 2): 

State 1 

State 2 

State 3 

State 4 

State 5 

State 6 

State 7 

State 8 

State 9 

State 10 

Assumptions: all phases present; X,, and S, < E' 

Primary variables: P,, 7: S,, S,, (X, ,S,)  
Assumptions: S, = 0, S ,  > 0, S ,  > 0; X,, and S, 4 c1 
Primary variables: P, ,  7: S,, XI,, (X, ,S,)  
Assumptions: S, = 0, S, = 1, S, s 0 
Primary variables: P,, 17; X , , ,  X , , ,  X,, 
Assumptions: S, > 0, S ,  > 0, S ,  = 0; X , ,  and S, 4 E ,  

Primary variables: P,, T, S,,  Xln,  (X,,S,)  
Assumptions: S, > 0, S ,  = 0, S, > 0 
Primary variables: P,, 17; S,, XI,, (X, ,S,)  
Assumptions: S ,  = 0, S ,  = 0, S, = 1 
Primary variables: P,, 17; Xlw,  X,,, (X, ,S,)  
Assumptions: S, = 1, S ,  = 0, S ,  = 0 
Primary variables: P,, 7; Xln,  (XwwSw), X,,S,) 
Assumptions: all phases present; X,, or S, > E ,  

Primary variables: P,, 7: S,, S,, X , ,  
Assumptions: S, = 0, S ,  > 0, S ,  > 0; X , ,  or S, > E' 
Primary variables: P,, 7: S,, XI,, X z ,  
Assumptions: S, > 0, S ,  > 0, S ,  = 0; X , ,  or S, > c1 
Primary variables: P,, 7: S , ,  Xlnr  X , ,  

In order to understand how the states in Method 2 were derived from Method 1, Table I 
gives a list of the states in Method 1 and the circumstances (or conversion rules) for generating 
the states in Method 2. 

Note that States (1, 2,4, 5,6, 7) in (30) use products of a mole fraction and a saturation as a 
primary variable. This can be thought of as analogous to the use of global mole fractions as 
primary variables, which is sometimes used in compositional reservoir ~ imula t ion . '~ - '~  In fact, 
the product (x,,S,) is essentially the global mole fraction for the air component if it is multiplied 
by the gas density and divided by the total molar density. The use of the product-type primary 
variables in (30) permits easy computation of the other secondary variables and does not require 
an inner iteration in the flash calculation as does the global mole fraction formulation.' 

States 1 ,2 ,4  are present only to avoid pathological situations where S, > 0 and both S, and 
X,, are very small, since the Jacobian becomes singular in the limit as both S,, X,,-+O if S, 
and X,, are primary variables. In practice, we use a value of in (30), so that typically 
these states are rarely used. 

In fact, it is possible to use States 1 ,2 ,4  for all cases where S, > 0, and not use States 8,9, 10. 
However, initial tests showed poor convergence with this set of primary variables. This may be 
because the secondary variable computation requires division by a (possibly) small value, which 
is always a dangerous procedure. 

We will not try the reader's patience at this point with a complete set of transition rules for 
all the states in the primary variable set (30) (Method 2). Suffice to say, these rules are analogous 

= 
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to (26). The state-switching criteria are based on the appearance of negative saturations or c, X,, > 1 for any phase I which is not present. Since the Jacobian is constructed numerically, 
the addition of different states and transition rules is not a particularly difficult coding task.39 
As described in References 39 and 40, the differentials in the Jacobian are approximated by 
numerical differencing. Owing to the mass conservative nature of the discrete equations, the 
Jacobian can be constructed very eff i~ient ly .~ ' .~~ 

Since the flux-limiting scheme (19-24) is not guaranteed to be oscillation-free in two or more 
dimensions, this approach can be dangerous to use in regions where the problem is highly 
non-linear. If a non-trivial negative mole fraction is the converged solution to the discrete 
equations, this can cause tremendous difficulties. l 3  Consequently, the flux limiter in equations 
(19H24) will be applied only to the contaminant mole fractions (p = 1,2). Additionally, the flux 
limiter is used for the flux between node i and mode j only if 

if (c, X p n k  -= tol; Vk E qi u q j )  then 

else 

endif 

use flux limiter 

use upstream weighting 

The constraint (31) ensures that flux limiting is only used for nodes which are not neighbours 
of any nodes where an NAPL phase is likely to appear. Initial tests without the constraint (31) 
sometimes caused very poor convergence of the Newton iteration. This was traced to the fact 
that the flux limiter sometimes caused small oscillations in the mole fractions. This in turn 
sometimes caused spurious state changes in nodes where the NAPL phase was close to appearing 
or had just disappeared. Typically, a value of to1 = 05  in (31) prevents a poor convergence 
behaviour for the Newton iteration. 

Note that (31) effectively precludes use of the flux limiter in regions where S, > 0. Since we 
are attempting to simulate processes for removing NAPLs from the subsurface by injection of 
steam, a properly designed process will cause rapid vaporization of the NAPL phase. Un- 
fortunately, use of the flux limiter at any node with S, > 0 virtually always caused problems. 
Consequently, use of (31) restricts the application of the flux limiter to nodes far away from the 
free NAPL zone, where the flow is almost linear. 

6. MODELLING OF HORIZONTAL WELLS 

Horizontal wells are now popular methods for increasing oil recovery in petroleum reservoirs. l9 
New drilling technology has reduced the cost of drilling shallow horizontal wells, and prototype 
field-scale experiments have been carried out using this technology for sursurface remediation 
problems. 

Horizontal wells cannot, by their very nature, be regarded as simply collections of decoupled 
nodal source/sink terms. For example, a given quantity of steam will be injected into the well. 
However, the amount of steam which will actually enter each node along the wellbore length 
will depend on that node's pressure. Only the total amount injected at all nodes is known a 
priori. In more complex situations the well may backflow. In other words, even though the total 
fluid flow is from the well into the formation, there may be some nodes where the flow is actually 
from the formation into the well. 

A simple method to model these wells is to create a virtual node or cell having the volume 
of the actual wellbore. The values of the fluid saturations, viscosities and so on can be regarded 
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as average properties of the fluid in the wellbore. The pressure in this virtual node is deemed 
to be at some arbitrary point in the wellbore. Pressures at any other point along the wellbore 
are computed by using the wellbore fluid density to compute the fluid head." Similar ideas 
have been advocated for use in petroleum reservoir simulation.20 It is possible to actually model 
the flow along the wellbore using two-phase pipe flow correlations, but this does not appear to 
result in any significant change in the simulation results." 

Consequently, this virtual wellbore node can be treated just like any other node, since the 
form of the discrete equations for this node is the same as for any other node, with the exception 
that some of the fluid properties are different (e.g. relative permeabilities for this node are straight 
lines). Conceptually, we can imagine that this virtual node overlays all the nodes in the mesh 
which are along the wellbore. 

It remains then to specify the flow terms between the wellbore node and a mesh node. Consider 
the mass flow equation for component p at node i (equation (12)). Assuming that there is no 
dispersive flux between wellbore node u and node i, the mass flux of component p will be given by 

mass flux = C ( M i ~ i ) ~ ~ ( f . u , ( X f ) ~ ~ ( f . u , y i u ( + k + '  - +:+ '1. (32)  
I 

The term (IcIiu - +,i) in equation (32)  is given by 

( I l / ru  - Il/ii) = P i u  - PIj - P u d D u  - oil. (33) 

If the mesh size is such that the mesh size in a direction perpendicular to the wellbore is of 
the same size as the actual wellbore radius, then yiu in equation (32)  is simply set to a large 
number to force the node pressure to be equal to the wellbore pressure. More typically, the 
mesh spacing is large compared with the wellbore radius. Assuming that the flow is radial near 
the wellbore, then the methods of Reference 41 can be used to determine yiu.  For simplicity we 
assume that the permeability tensor is diagonal, 

and that the wellbore is along the x-axis. In this case the final expression for yiu is 

2nk'hi y i j  
j E q , ' . j + u  y .  = 

IU 
yij log(r>/rL) - Znk'h, ' 

(34)  

k = (k,k,)''2, 
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'> 

where rw is the actual wellbore radius, x j  and yj are the x- and y-coordinates of node j 
respectively, q: are those neighbour nodes of node i which are not along the wellbore direction 
and a and f i  are neighbours of node i along the wellbore. The above expression is a 
three-dimensional generalization of the expressions given in Reference 18. Note that there 
appears to be a typographical error in the two-dimensional result given in Reference 18. For 
further details the reader is referred to References 41 and 42. 

Since the wellbore pseudonode has a small volume compared with surrounding nodes, it might 
be expected that this could cause problems for the Newton iteration if the wellbore saturations 
or mole fractions change suddenly. During some stress testing of this wellbore formulation we 
were able to take reasonable time step sizes if we multiplied the wellbore volume by a factor of - 100. This effectively increased the time scale of the wellbore node." Cumulative production 
graphs (with the increased wellbore node volume) were virtually identical with the graphs 
obtained using the actual wellbore volume. However, in all our remediation scenarios it was 
unnecessary to increase the wellbore pseudonode volume. For injection wells which did not 
backflow, the wellbore node rapidly becomes saturated with the injected fluid and then the 
saturations of the wellbore node stay constant. A properly placed production well produced 
mostly gas and some water, which also resulted in only a slow change in production wellbore 
node saturations. Nevertheless, there may be some cases where the Newton iteration convergence 
can be enhanced by increasing the size of the effective volume of the wellbore pseudonode. It 
would appear that this can be done without significantly altering the computational results. 

7. EFFECTIVENESS OF THE NON-LINEAR FLUX LIMITER 

Recall that the flux limiter (20H24), (31) was designed to reduce dispersion in situations where the 
contaminant motion was essentially determined by a linear transport process (i.e. far away from 
regions where S, > 0). 

Figure 1 shows a two-dimensional areal example (no gravity). No-flow boundaries are used 
on all edges of the domain. NAPLs and air are injected at the upper left corner and a constant 
pressure producer is placed at  the lower right comer. This is a true multidimensional situation, 
since the flow is first diverging near the injector and then converges near the producer. All 
dispersion terms in equation (1) were set to zero, isothermal flow was simulated and a single 

Areal Problem (no gravity) 
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Figure 2. NAPL mole fraction in gas phase at producer for non-linear flux limiter (TVD) and single point upstream 
(UPS) methods 

NAPL component was injected. The injection rate of air was quite large so that a free NAPL 
phase (S, > 0) appeared in only a few nodes near the injector. The rapid air motion caused the 
NAPL to volatilize. The NAPL contaminant was then transported in the gas phase to the 
producer. 

Figure 2 shows the results for the NAPL mole fraction in the gas phase at the producer using 
both single-point upstream (UPS) and non-linear flux limiter (TVD) methods for both 18 x 18 
and 36 x 36 grids. Note that the non-linear flux limiter does show some improvement over the 
single-point upstream method (i.e. a steeper rise in the mole fraction) and appears to be 
converging faster (as the grid is refined) than the single-point upstream weighting. This is 
especially noticeable at very small mole fractions (note the log scale used in Figure 2), which is 
important for determining safe drinking water levels of contamination. 

Consequently, all runs reported in the following will use the non-linear flux limiter (20)-(24) 
with the constraint (31). 

8. CHOICE OF PRIMARY VARIABLES 

Two-dimensional computational results using the primary variable set (25) (Method 1) were 
reported in Reference 13. Recall that it is necessary to use the penalty source (29) with this 
primary variable set to ensure convergence to physical solutions. Although this primary variable 
set worked well generally, there were some situations where poor convergence of the Newton 
iteration was noted. 

Figure 3 shows a two-dimensional cross-section. No-flow boundaries are imposed on the 
upper and lower surfaces. Hydrostatic pressure was imposed on the left and right boundaries 
(with the pressures at the points noted in Figure 3), which resulted in a sloping water table and 
groundwater flow as shown. 

The isothermal test problem used the following injection scenario. The system was allowed 
to equilibrate for 7 days, then a small amount of single-component DNAPL was injected during 
the period from 7 to 7.1 days. The computation was then continued to 100 days. The DNAPL 
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Figure 3. Two-dimensional cross-section for test of primary variable sets 

first sinks below the water table and then dissolves into the water phase. Transport also occurs 
in the gas phase (a dense gas plume sinks down along the top of the water table.) A 10 x 15 
grid was used. 

This problem was solved with both the primary variable set (25) (Method 1) and the set (30) 
(Method 2). Table I1 gives the total number of Newton iterations required for both methods 
(isothermal problem). 

Although the computed solutions at 100 days for both methods were very similar, the number 
of Newton iterations for the primary variable set (25) (Method 1) was about 2.4 times 
the number of Newton iterations for the primary variable set (30) (Method 2). Close examination 
of the Newton iterations for Method 1 revealed the following pattern: nodes below the 
water table, which had small NAPL saturations, would switch to a state with no NAPL 
saturation (owing to dissolution in the passing water phase). The actual switch to a state with no 
NAPL did not appear to cause any problems. However, in subsequent time steps the amount 
of NAPL dissolved in the water phase would rapidly decrease to a very small value. During the 
course of the Newton iteration the mole fraction of NAPL in the water phase would overshoot 
to a negative value and the iteration would never recover. This would cause a repeat time step. 
Various methods were tried to alleviate this problem (e.g. heavy underrelaxation, modification 
of non-physical densities for negative mole fractions, etc.) without success. Possibly this problem 

Table 11. Computational efficiency for Methods 1 and 2 
~ 

Total Newton iterations* 

Isothermal problem Steam injection 

Method 1 599 609 
Method 2 247 669 

CPU time proportional to Newton iteration count. 
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is due to the small gas saturation, which is required for this formulation, below the water 
table. 

However, as seen in Table 11, this problem was entirely absent from the computation using 
the primary variable set of Method 2. As noted in previous studies, the choice of primary variables 
can often have a dramatic effect on the convergence of the Newton i terat i~n.~’  

The above test problem was converted into a steam injection problem by following the same 
DNAPL injection procedure until 7.1 days. Then high-temperature steam was injected at the 
point shown in Figure 3 during the period from 7.1 to 7.6 days. The injection rate was such as 
to cause the NAPL to volatilize, then be convected in the gas phase to the cool boundary regions 
and finally to condense (the boundaries were maintained at 293 K). Subsequently, cold water 
was injected (at the former steam injection point) during the period from 7.6 to 7.9 days, which 
caused the entire steam zone to collapse. This problem constituted a very severe test, since many 
state switches were triggered. 

Although exact converged solutions of the discrete equations using the primary variables of 
(30) must have positive mole fractions and saturations, rather surprisingly, we found that 
convergence was enhanced considerably by addition of the penalty source equation (29). In fact, 
without the penalty source some example runs using Method 2 would converge to small negative 
air mole fractions (within the convergence tolerance). This negative air mole fraction would 
accumulate from time step to time step and eventually cause problems. Use of the penalty source 
eliminated this problem. Consequently, the penalty source was used for both the primary variable 
sets (26) and (30). It is also our understanding that convergence of a global mole fraction 
formulation of this problem was also enhanced by the use of a similar penalty source.43 

The total Newton iterations for Methods 1 and 2 for this problem (steam injection) are 
compared in Table 11. In this case Method 1 is actually slightly more efficient than Method 2. 
Analysis of the Newton iterations showed that Method 2 generally required an extra iteration 
after switching the gas phase on or off, compared with Method 1. Since the gas phase in Method 
1 is always present, Method 1 does not require these extra iterations. 

Consequently, for pure steam injection problems there does not appear to be any advantage 
to using the primary variable set of Method 2; thus Method 1 will be used for all subsequent 
steam injection computations. 

However, the performance penalty for using Method 2 compared with Method 1 is small and 
in some circumstances (the isothermal problem) Method 2 greatly outperforms Method 1. 
Therefore for general multiphase, multicomponent simulation we would recommend Method 2 
be used. 

9. A TWO-DIMENSIONAL EXAMPLE 

Since it is impractical to carry out a grid refinement study for a full three-dimensional problem 
(the 3-D problems presented in the next section require about 30-40 h of CPU time on an R-6000 
workstation), we will consider a two-dimensional cross-sectional problem and carry out this 
computation on two different grid sizes. This two-dimensional cross-section is then converted 
into a full three-dimensional problem. It can be reasonably argued that the discretization error 
observed in the two-dimensional case is about the same size as the error in the full three- 
dimensional problem. As pointed out in Section 1, the minimum gas finger width which can be 
resolved on any grid is of the order of the size of the node spacing. This discretization effect is 
noticeable on the two-dimensional cross-section (as will be seen) but does not have much 
effect on the total contaminant recovery. Although it can reasonably be assumed that this will 
be true for a three dimensional simulation using a grid size comparable with the two-dimensional 
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Figure 4. Two dimensional DNAPL steam injection cross-section 

cross-section, we are unable to confirm this with the computational resources at our disposal. 
It is possible that the discretization error for the three-dimensional fingers is very different from 
that for two-dimensional fingers. 

Figure 4 shows the geometry for this example. The absolute permeabilities were lo-' ' mz 
everywhere except for the low-permeability barriers shown. The cross-section is 4 m thick. Note 
that there is an impermeable layer at z = 5 m. Since the computational domain is extended into 
the region below this impermeable layer, this will simulate heat loss below the steam injector. 
Both left and right boundaries are held at a constant temperature (293 K) and hydrostatic 
pressure is maintained with pressure fixed at the points noted in Figure 4. This causes cold 
groundwater flow from left to right, with a sloping water table 1-2 m below the surface. No heat 
loss or fluid flow is permitted through the upper surface. 

The system is first allowed to equilibrate for 50 days and then a mixture of TCE and toluene 
(50% each by volume) is injected at a rate of 005  m3 day- ' during the period from 50 to 160 
days. Then the system is again allowed to equilibrate during the period from 160 to 250 days. 
From 250 to 400 days, 100% quality steam at a temperature of 400 K is injected at a rate of 
2 m3 day- ' (cold water equivalent volume). Producing wells (constant pressure 20 kPa) were 
placed as shown in Figure 5. 

Full details about the fluid properties, relative permeabilities and capillary pressures can be 

X direction (M) 

Figure 5. DNAPL contours, 2D example, time 250 days 
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X direction (M) 
Figure 6. DNAPL contours, 2D example, time 254 days 

found in Reference 13. This problem was computed on both 22 x 14 and 43 x 27 grids. 
Rectangles were divided into triangles as in Reference 21. 

The NAPL saturation contours at 250 days are shown in Figure 5. Note that the hetero- 
geneities have caused the DNAPL to spread out from the injection point as the DNAPL sinks 
through the water table. Observe that a finger of NAPL forms along the lower boundary owing 
to the ambient groundwater flow. Note also that a region of high NAPL saturation exists on 
the low-permeability shelf just below the injection point. This region is shielded from the steam 
injector by the low-permeability shelf. 

Figures 6-9 show the NAPL saturations at  various times during the steam injection (43 x 27 
grid). At 400 days only a small amount of NAPL remains in the non-aqueous phase. Figure 10 
shows the total amount of DNAPL injected and then produced through the production wells 
as a function of time for both 22 x 14 and 43 x 27 grids. The injection and equilibration phases 
can be seen in the straight lines from 50 to 160 days and from 160 to 250 days. 

X direction (M) 
Figure 7. DNAPL contours, 2D example, time 257 days 
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Figure 10. Volume of DNAPL (injected - produced) for 22 x 14 and 43 x 27 grids 
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Although the finer grid shows some difference in the DNAPL removal rate at the end of the 
recovery period, both computations result in removal of most of the mass of the DNAPL at 
the end of the steam injection period. Consequently, for the purposes of comparing different 
scenarios, the coarse 22 x 14 grid would appear to be adequate. 

In fact, the discretization error is quite small considering that upstream weighting of the mole 
fractions will be used whenever condition (31) is violated. However, close examination of the 
NAPL recovery process reveals the following: once the NAPL phase is heated up and begins 
to vaporize, a finger of contaminant-rich gas phase flows from the contaminated zone into the 
production well. Along this finger the contaminant mole fraction is very slowly varying and 
hence little numerical smearing results. There is some numerical diffusion transverse to the flow, 
but this is slow compared with the large convective transport along the finger. The primary 
reason for the slower recovery for the fine grid simulation is that the gas fingers are smaller on 
the finer grid, so some NAPL zones are bypassed and take longer to heat up and vaporize 
(bypassed zones are heated by conductive heating). 

10. THREE-DIMENSIONAL EXAMPLES 

The two-dimensional problem of the last section was extended to three dimensions as shown 
in Figure 11. A 22 x 13 x 14 grid was used. Each brick was divided into six tetrahedra as 
discussed in Reference 22. Boundary conditions were similar to those used for the two- 
dimensional example, except that no flow boundaries were imposed on the x = 0 m and 
x = 50m faces. The low-permeability layers near the water table were broken up in the third 
dimension. All fluid properties were as given in Reference 13. 

Initially the systems was equilibrated for 50 days and the DNAPL was injected from 50 to 
160 days. The injection rates were 0.1 m3 day-' of TCE and 0.l3 day-' of toluene. Equilibra- 
tion was allowed during the period from 160 to 250 days. Three different steam injection scenarios 
were investigated. 

Case 1 used the placement of horizontal injectors and vertical producers shown in Figure 12. 
Each producer was held at a constant 20 kPa pressure. Each steam injector injected a total of 
2 m3 day-' (cold water equivalent) of 100% quality steam at 400 K. The wells were modelled 
using the methods of Section 6. 

Case 2 is shown in Figure 13. In this case only one steam injector is used. Steam was injected 
at a rate of 2 m3 day-', 100% quality, temperature 400 K. Consequently, this case injected only 
half the amount of steam as compared with Case 1. All production wells were held at 20 kPa 
pressure. 

DNAPL Injection LOW Permeability 
LOW Permeability 

4 
2 

Impermeable 

Figure 11. Problem configuration, 3D DNAPL steam injection 
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Figure 15. S, = 0.01 isosurface, 250 days, all cases 

Case 3 is similar to Case 2, except that only two production wells (fixed pressure 20 kPa) were 
used. The placement of these wells is shown in Figure 14. The steam injection rate for Case 3 
was as for Case 2. 

Figure 15 shows the isosurface S ,  = 0.01 (the residual saturation in the NAPL-air system) at 
250 days. Note that the top of the computational domain cuts the top of the isosurface. Figures 
1 6 2 0  show S ,  = 0.01 isosurfaces at various times during the steam injection for Case 2. The 
NAPL contaminant gradually breaks up into smaller chunks, which then vaporize. The 
contaminant is then removed from the system by the production wells. 

Figure 21 compares the total NAPL injected and produced through the production wells for 
all three cases. Although the rate of mass removal is different for all three cases, both Cases 1 
and 2 remove most of the mass of contaminant by 400 days. This is rather surprising, since the 
steam injection rate for Case 2 is only half the steam injection rate for Case 1. 

Case 3 has removed about 90% of the DNAPL by 400 days. If the injection period is extended, 
this case also removes >99% of the DNAPL. It is interesting to note that, at least for this 
example, poor placement of production wells has a bigger effect than lowering the steam injection 
rate. 

Nevertheless, all three cases show good recovery of DNAPL. Recall that there are impervious 
layers which shield some of the DNAPL from the steam injector. Consequently, it would appear 
that steam injection is relatively insensitive to heterogeneities and injection/production well 
placement. This is in contrast with air sparging, which is quite sensitive to heterogeneities3’ 
Conductive heating eventually causes vaporization of bypassed NAPL zones. This heated 
contaminant-rich gas eventually finds its way to the production wells via gravitational effects (hot 
gas will rise). Since in practice it is impossible to exactly characterize a remediation site, this 
insensitivity to heterogeneities would seem to make steam injection a good candidate process 
for remediation of DNAPL sites. 

At the end of the steam injection for Cases 1 and 2, even though most of the mass of DNAPL 
has been removed, the mole fraction of contaminant in the water phase still exceeds drinking 
water standards. However, since there is no NAPL phase present, a water flush of this region 
(i.e. pump and treat) should quickly eliminate the remaining hazard. This is in contrast with 
traditional pump and treat methods, which must be continued for tens of years to remove 
DNAPLs if there is an NAPL phase present. 
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Figure 19. S ,  = 0.01 isosurface, 310 days, Case 2 
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Figure 21. Volume of DNAPL (injected - produced) for all three cases, 3D steam injection scenarios 
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11. CONCLUSIONS 

It is extremely important to ensure that the discretized algebraic equations for multicomponent, 
multiphase, non-isothermal subsurface flow converge to physically admissible solutions (i.e. 
positive mole  fraction^).'^ In regions where the flow is dominated by non-linear effects, 
single-point upstream weighting is a safe technique which helps to ensure convergence to 
physically reasonable solutions.” The two-dimensional grid refinement study suggests that 
single-point upstream for the non-linear terms is not overly diffusive. In regions where the 
contaminant transport is dominated by linear effects (i.e. no NAPL phase present), upstream 
weighting can certainly be overly diffusive. In these regions use of a non-linear flux limiter offers 
some improvement over single-point upstream weighting. However, it is necessary to be very 
cautious in the application of the flux limiter. Overly aggressive application of the flux limiter 
can cause the spurious appearance of small amounts of the NAPL phase and hence convergence 
problems. 

Since the objective of this work was to investigate processes for the removal of the NAPL 
phase, which are highly non-linear phenomenan, the upstream weighting methods used here 
(single-point method in regions where S ,  > 0, flux limiter in regions where S ,  = 0) are probably 
adequate for practical purposes. This is because the actual mass of contaminant in the water 
and air phases is very small compared with the mass in the NAPL phase. However, if it is 
desired to use a single model for prediction of heat and mass transfer in the non-aqueous phase 
and for prediction of far-field plume evolution, other methods can probably be used. For 
example, if it is known that we are sufficiently far away from the NAPL source so that no NAPL 
phase can appear, then it may be possible to drop the requirement for strict monotonicity in 
the discretization, which would permit use of central weighting and higher-order time-stepping 
methods. Other possibilities are noted in Reference 44. 

The choice of the primary variable set can have a large effect on the convergence of the 
Newton iteration. The simple variable set (25)  (Method 1) is conceptually straightforward and 
works well for steam injection problems. However, in some cases this variable set performs 
poorly. For more general situations the more rigorous primary variable set (30) is probably 
preferable. For the primary variable set of Method 1 it is necessary to use the penalty source 
equation (29) to ensure convergence to the physically correct solution. Rather surprisingly, the 
penalty source was also necessary for good convergence of the primary variable set (30) (Method 
2). It also appears that the penalty source enhances convergence of other choices of primary 
variables.43 

The conceptually simple method of modelling multinode wells (i.e. horizontal wells) as a 
wellbore pseudonode worked very well for this application. This approach handles backflowing 
wells in a correct manner. The actual wellbore volume was used for the volume of the wellbore 
pseudonode. This caused no difficulty whatsoever. 

In terms of simulation results it would appear that steam injection is relatively insensitive to 
heterogeneities and placement of injectors and producers compared with air ~parging.~’  Of 
course, further tests with more complex heterogeneities are necessary to confirm this, but steam 
injection seems to be a promising approach for removing a large amount of contaminant mass 
from DNAPL sites. It remains to be seen as to whether this technique is economically feasible. 
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